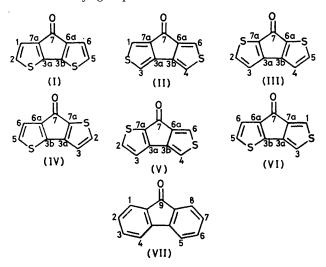
Hydrogen Bonding of Cyclopentadithiophenones and Fluorenone in Trifluoroacetic Acid. A Study of the Electronic Absorption, ¹H, and ¹³C Nuclear Magnetic Resonance Spectra


By Peter B. Koster,*'† Jan Runsink, and Matthijs J. Janssen, Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands

The electronic absorption bands of cyclopentadithiophenones and fluorenone show large shifts towards longer wavelengths when the solvent is changed from cyclohexane to CF_3CO_2H . ¹H and ¹³C n.m.r. spectra of these ketones in CDCl₃ and CF_3CO_2H differ considerably. These observations point to strong hydrogen bond formation between the carbonyl oxygen atom and the solvent. Taking hydrogen bond formation into account by changing the core parameters of the oxygen atom, PPP calculations satisfactorily predict the bathochromic shifts of the electronic absorption bands. The calculated change in electron density at a particular carbon atom correlates well with the change in ¹H and ¹³C n.m.r. chemical shifts as measured in CDCl₃ and CF₃CO₂H.

We have previously found ¹ that fluorenone (VII) and cyclopentadithiophenones (I)—(VI) are protonated at the ring system and/or at the carbonyloxygen atom in the strong acidic system FSO_3H - SbF_5 - SO_2 at -60 °C. From the ¹H n.m.r. spectra it was concluded that protonation of the carbonyl group did not drastically change its double bond character. In the same solvent system cyclopentadithiophens (CH₂ instead of C=O) decompose, but in CF₃CO₂H at -15 °C three compounds gave ring-protonated species which were stable enough to be studied spectroscopically.

We now report that cyclopentadithiophenones are not protonated in CF_3CO_2H , but form strong hydrogen bonds instead. The hydrogen bonded species were studied by electronic absorption and ¹H and ¹³C n.m.r. spectroscopy. In order to explain the observed properties on a quantitative basis, PPP calculations are presented in which hydrogen bond formation is interpreted in terms of charge displacements in the σ -skeleton of the carbonyl group.

RESULTS AND DISCUSSION

Electronic Absorption Spectra.—In cyclohexane, the cyclopentadithiophenones display weak lowest singletsinglet transitions, λ 342-472 nm (ϵ 186-1250), similar to fluorenone, λ 370 nm (ϵ 350), for which this band was assigned to a $\pi - \pi^*$ transition.²⁻⁴ In 95% ethanol, these absorptions shift 10-21 nm towards longer wavelengths as expected for a $\pi - \pi^*$ transition of ketones for a change to a more polar solvent. The magnitude of these shifts is comparable to the shift of the corresponding band of fluorenone.² Therefore, the longest wavelength absorptions of the cyclopentadithiophenones can also be assigned to a $\pi-\pi^*$ transition. The fact that PPP calculations (see below) correctly predict the experimental transitions underlines this assignment. When the solvent is changed from cyclohexane to trifluoroacetic acid (at -15 °C) the longest wavelength absorption bands of cyclopentadithiophenones show remarkable shifts (44-73 nm; Table 1). New absorption bands do not appear. The corresponding transition of fluorenone shows a similar, although less striking shift (25 nm).

Dissolved in various mixtures of CF_3CO_2H and H_2O , all bands showed a continuous shift towards longer wavelength going from H_2O to CF_3CO_2H . These shifts are not due to a change in polarizability of the solvent since the spectra in a 3% solution of CF_3CO_2H in benzene and in pure CF_3CO_2H are almost identical.

The positions of the absorption bands in acetic acid are comparable with the positions in 95% ethanol. Therefore, the large shifts observed on changing the solvent from CH_3CO_2H to CF_3CO_2H must be attributed to the stronger proton donating power of CF_3CO_2H . The absence of a new strong absorption band, as observed when fluorenone is protonated at the oxygen atom,^{5,6} excludes protonation, whereas the absence of bandbroadening excludes a fast equilibration between ketone and conjugated acid. Therefore, the observed large red shifts of the absorption bands of the ketones are most probably due to strong hydrogen bond formation between the carbonyl oxygen atom and CF_3CO_2H .

† Present address: Instituut voor Rationele Suikerproductie, P.O. Box 32, 4600 AA Bergen op Zoom, The Netherlands.

TABLE 1

Experimental and calculated transitions of cyclopentadithiophenones and fluorenone in cyclohexane and CF_3 - CO_2H (-15 °C). The transitions in CF_3COH_2 are given from 270 nm (the cut-off wavelength of CF_3 - CO_2H) upwards

	C	ycloh	exane		CF ₃ CO ₂ H			
	Experimental C		Calcu	lated	Experimental		Calculated	
Ketone	λ/nm	10-3e	λ/nm	f	λ/nm	10 ⁻³ e	λ/nm	f
(I)	472	1.3	457	0.171	545	0.6	532	0.100
(-)	297sh	5.5	293	0.094	335 sh	3.5	315	0.176
	285 sh	7.0	292	0.481	304	5.0	302	0.218
	266	32.1	269	0.172			280	0.415
(II)	342	1.1	312	0.003	400sh	0.6	353	0.006
	305	5.2						
	299	4.0						
	291	6.8	280	0.021	335	6.1	299	0.098
	286 sh	5.7			200			0.044
	281	6.5	268	0.041	288	4.7	275	0.044
	$275 \mathrm{sh}$	8.7						
(III)	418	0.2	463	0.005	485	0.4	541	0.000
()	337	10.2	321	0.177	362	9.1	341	0.423
	330	5.9						
	321	10.2	311	0.386	347 sh	8.5	332	0.200
	311	6.8						
(IV)	459	0.4	450	0.064	510	0.2	526	0.032
	334sh	2.4			0.40			
	321	2.7	313	0.278	346	7.2	337	0.295
	298	4.8	293	0.296	313	6.7	308	0.175
							271	0.238
(V)	377	0.8	364	0.099	421	0.8	410	0.066
. ,	326	3.5						
	319	3.3						
	312	4.5	298	0.118	$338 \mathrm{sh}$	5.9	322	0.308
	300	3.7			315 sh	4.6		
	290	7.6	290	0.227	302	5.4	299	0.143
	279	6.5						
(VI)	380	0.6	360	0.159	437	0.4	408	0.083
	0001				339sh	1.7		
	306sh	2.2	296	0.038	327	2.1	308	0.021
	295 sh	3.2	273	0.247	290sh	7.3	287	0.323
	268	44.0	268	0.730	270	45.1	268	0.879
(VII)	370	0.4	355	0.101	395	0.2	398	0.056
(318	0.5			333	24.8		
	312	0.7	310	0.096	320sh	2.3	322	0.071
	305	2.1						
	292	4.2	305	0.001	302	2.7	313	0.081
	281	3.1			290 sh	1.8		

N.m.r. Spectra.—¹H and ¹³C n.m.r. spectra were recorded in CDCl₃ and CF₃CO₂H or CF₃CO₂D (at -15 °C). The analyses of the ¹H and ¹³C n.m.r. spectra in CDCl₃ were presented earlier.^{7,8} The assignments of the resonances in CF₃CO₂H(D) were based on the chemical shifts in CDCl₃. The large difference in intensity of the tertiary and quaternary carbon atoms was also used for their differentiation. In some cases, using CF₃CO₂D as a solvent, hydrogen-deuterium exchange was observed which was used for the assignment ^{9,10} (see Experimental section). Chemical shifts in CF₃CO₂H (¹³C n.m.r. spectra) and the differences of the chemical shifts in CF₃CO₂H and CDCl₃ are compiled in Table 2.

The ¹H chemical shifts in CF_3CO_2H were found -0.03 upfield to +0.23 p.p.m. downfield compared with those in $CDCl_3$. The ¹³C chemical shifts moved -2.4 to

+7.0 p.p.m. on going from CDCl₃ to CF₃CO₂H. For the structural element C-H the changes in ¹H and ¹³C chemical shifts were inter-related. Least-squares analysis gave the correlation $d\Delta\delta^{13}C/d\Delta\delta^{1}H = 24$ (r 0.97, n 18), which means that ¹³C n.m.r. is 24 times more sensitive to charge delocalisation than ¹H n.m.r. This factor is almost the same as the values of 22 and 20, reported for the correlation of chemical shifts of the *para*-substituent in monosubstituted benzene derivatives.^{11,12} For the structural unit depicted below the downfield shifts of the ¹³C resonances are much larger for the β -and δ -positions (2.7—7.0 p.p.m.) than for the γ -position (0.9—1.2 p.p.m.). This order is reversed for the β '- and γ' -positions; now the downfield shift is largest for the γ' -carbon atom.

The α -carbon atoms are shifted upfield (-0.4 to -2.4 p.p.m.) and large downfield shifts are observed for the carbonyl carbon resonances (+6.0 to +6.8 p.p.m.). These results can readily be explained by hydrogen bonding to or protonation of the carbonyl group in CF₃CO₃H. The increase of positive charge on the carbonyl carbon results in a downfield shift in the ¹³C n.m.r. spectrum. This positive charge will be delocalised over the π electronic system of the ketones, causing a downfield shift of β - and δ -carbon atoms. In compounds (I), (III), and (IV) the β - and δ -tertiary carbon atoms show larger downfield shifts than the quaternary β - and δ -atoms C(3a) and C(3b). Probably the central ring, which may be described in these compounds as a formal cyclopentadienone ring, is not able to stabilize a positive charge in order to avoid becoming 'antiaromatic'. The ¹³C resonances of fluorenone have changed much more in H₂SO₄ than in CF₃CO₂H, compared with CDCl₃. These much larger shifts in H₂SO₄ rule out the possibility of complete protonation in $CF_{3}CO_{2}H$. In the case of a fast equilibrium between protonated and ' free ' ketone in CF₃CO₂H all resonances should have shifts that are intermediate between those in H_2SO_4 and $CDCl_3$. Since this was not observed, only hydrogen bonding satisfactorily explains the experimental results.

The ¹H n.m.r. spectra of the ketones in CF_3CO_2H support this conclusion. Compared to the spectra in $CDCl_3$ the chemical shifts of H(1) and H(6) in (II) shift 0.23 p.p.m. downfield. In FSO_3H - SbF_5 - SO_2 at -60 °C, in which the carbonyl oxygen is protonated, the same protons of (II) shift as much as 0.69 p.p.m. downfield.¹

PPP Calculations.—In order to study whether the influence of hydrogen bond formation on the electronic absorption and n.m.r. spectra can be explained in terms of MO theory, PPP calculations 13,14 were carried out. Details of the calculations have been reported elsewhere.¹ The parameters used are given in Table 3.

The O-H bond in the hydrogen bonded carbonyl group (below) may be considered to be intermediate

$$= \mathbf{O}^{+\delta Q} \cdot \cdot \cdot H^{+1-\delta Q}$$

between a complete covalent bond, as in the case of protonation (δQ 1), and non-bonded (δQ 0), as in the case

¹³C N.m.r. chemical shifts (p.p.m.) in CF_3CO_2H ; ¹H and ¹³C n.m.r. solvent shifts (p.p.m.) in $CFCO_2H$ (compared with $CDCl_3$) and the calculated (δQ 0.25) changes in charge due to hydrogen bonding

	CDCl ₃)	and the	calculated	$(\delta Q \ 0.25)$	changes i	in charge due	e to hydro	gen bonding	g
Compound	Atom	$\Delta \delta(^{1}H)$	δ(¹³ C)	$\Delta\delta(^{13}C)$	ΔQ	Atom	δ(¹³ C)	Δδ(¹³ C)	ΔQ
(I)	1,6	-0.03	121.9	0.5	0.005	3a, 3b	151.8	3.0	0.013
()	2, 5	0.03	128.3	1.5	0.012	6a, 7a	141.7	-0.5	-0.022
						7	188.6	6.4	0.062
(II)	1,6	0.23	133.7	7.0	0.024	3a, 3b	141.2	0.5	-0.001
. ,	3, 4	0.04	117.9	2.8	0.014	6a, 7a	146.1		-0.210
							184.6	6.0	0.054
(III)	2, 5	0.14	140.9	4.7	0.023	3a, 3b	154.6	3.0	0.017
. ,	3, 4	0.01	120.7	1.2	0.007	6a, 7a	135.4	-1.2	-0.026
						7	171.2	6.8	0.054
(IV)	2	0.14	141.6	5.0	0.023	3a	152.6	3.0	0.018
	3	-0.02	120.2	0.9	0.006	3b	153.0	2.7	0.011
	5	0.03	128.3	1.8	0.013	6a	142.7	-0.4	-0.019
	6	-0.02	122.6	0.6	0.005	7a	134.2	-1.4	-0.028
						7	187.6	6.5	0.059
(V)	$\frac{2}{3}$	0.23	144.2	6.0	0.025	3a	157.9	4.8	-0.022
	3	0.04	121.2	1.2	0.004	3 b	139.5	-0.1	0.006
	4	0.08	117.4	3.3	0.022	6a	143.2		-0.019
	6	0.19	131.6	5.4	0.026	7a	141.6	-2.2	-0.027
						7	184.8	6.6	0.051
(VI)	1	0.17	131.2	5.7	0.026	3a	138.2	-0.2	-0.005
	3	0.06	118.1	3.9	0.022	3 b	158.7	5.5	0.017
	5	0.05	129.9	1.8	0.011	6a	147.2	-1.7	-0.022
	6	0.00(4	l) 121.8	0.6	0.003	<u>7</u> a	141.7	-2.4	-0.020
						7	186.0	6.4	0.056
(VII)	1, 8		125.2	1.1	0.012	10, 13	133.2	-0.6	-0.025
	2, 7		129.3	0.6	0.008	11, 12	145.1	1.1	0.006
	3,6		136.6	2.3	0.019	9	199.6	6.3	0.065
	4, 5		120.5	0.6	0.009				
(VII)	1, 8		132.3	8.4		10, 13	130.7	-3.1	
(H ₂ SO ₄)	2, 7		133.1	4.4		11, 12	148.1	4.1	
. 4 1/	3, 6		145.6	11.3		9	205.4	12.2	
	4.5		124.6	4.7					

of the free ketone. The positive charge on hydrogen leads to displacement of the oxygen σ -electrons. This has been accounted for in the π -electron calculations by modifying the core parameters as a function of the core charge following the expressions given by Nishimoto *et al.*¹⁵ Parameters for the core charges +1 and +2 given in Table 3, represent the limits for the free and protonated oxygen atom, respectively.

The value of δQ was varied and the calculated shifts of the longest wavelength transitions in the electronic absorption spectra due to hydrogen bonding were compared with the experimental shifts. The value $\delta Q + 0.25$ gave the best results (Table 4) and was used to describe the hydrogen bonding of cyclopentadithiophenones in CF₃CO₂H.

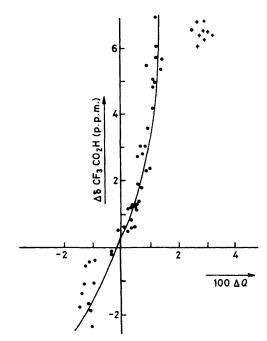
The calculated transitions of the ketones in cyclohexane and CF_3CO_2H are shown in Table 1. In general, good agreement is observed between the experimental and calculated bands in cyclohexane. The transitions of ketone (II), however, are calculated at too low energy, as is the first band of ketone (III). The remainder of

TABLE 3

Semiemperical parameters for the PPP calculations *

				Core
Atom	$I_{\mathbf{X}}(eV)$	$\gamma_{XX}(eV)$	$\beta_{CX}(eV)$	charge
С	11.22	10.53	$f(\mathbf{p})$ †	+1
S	20.00	10.84	-1.625	+2
0	13.60	11.30	$f'(\mathbf{p})$ ‡	+1
	17.36	13.48	$f'(\mathbf{p})$	+1.25
	30.88	20.03	$f'(\mathbf{p})$	+2
* C-O b	ond distance	e 126 Å.	$+ \beta_{cc} = -0$	51p - 1.84 eV

* C-O bond distance 1.26 A. $\dagger \beta_{CC} = -0.51 p - 1.84 \text{ eV}.$ $\ddagger \beta_{CO} = -0.56 p - 2.20 \text{ eV}.$ the calculated spectrum agrees well with the experimental bands. In CF_3CO_2H the first transitions of the same ketones (III) and (II) are calculated at too low and too high energy, respectively, but here too the remainder of the spectra of (II) and (III) as well as the transitions calculated for ketones (I), (IV)—(VI), and fluorenone are in very good agreement with the observed values. The conclusion that cyclopentadithiophenones


TABLE 4

The experimental and calculated ($\delta Q + 0.25$) shifts of the longest wavelength transitions in the electronic absorption spectra of the cyclopentadithiophenones and fluorenone in CF₃CO₂H

Ketone	$\Delta_{ ext{experimental}}/$ nm (kK *)	$\frac{\Delta_{calculated}}{nm}$ (kK)				
(I)	73 (2.9)	75 (3.1)				
ÌÌ)	58 (4.2)	41 (3.8)				
ÌII)	67 (3 .3)	78 (3.1)				
(IV)	51(2.2)	76 (3.2)				
(V)	44 (2.7)	46 (3.1)				
(VI)	57 (3.1)	48 (3.3)				
(VII)	25 (1.7)	43 (3.1)				
* $1 \text{ kK} = 1 000 \text{ cm}^{-1}$.						

are not protonated in CF_3CO_2H is also supported by the results of the calculations of the transitions of the protonated ketones ($\delta Q + 1$). For each ketone the calculations predict a strong extra band at 405—457 nm and a very large red shift of the longest wavelength absorption, in contrast with the experimental results.

The differences in charges as calculated for each carbon atom in the free and hydrogen bonded ketone, are, together with the observed ¹³C and ¹H n.m.r. chemical shift differences, summarized in Table 2. The correlation between the calculated changes in electron density and the ¹³C chemical shift is given in the Figure. The results show that a simple linear correlation does not exist. The data for the carbonyl atoms are situated in a group apart from the other carbon atoms. When the carbonyl carbon atoms are excluded from the correlation, a curved line is obtained of which the slope varies from 120 to 240 p.p.m./el. Least squares analyses gave the following results: all carbon atoms except those of the carbonyl group, $d\Delta\delta^{13}C/d\Delta Q$ 128 + 10 p.p.m./el (r 0.90, n 42), tertiary carbon atoms,

Correlation of ¹³C solvent shifts of cyclopentadithiophenones in $CF_{3}CO_{2}H$ and the calculated changes of charge (+, carbonyl carbon atoms)

 $d\Delta \delta^{13}C/d\Delta Q$ 236 \pm 20 p.p.m./el (r 0.95, n 22), and $d\Delta\delta^{1}H/d\Delta Q$ 9 ± 1 p.p.m./el (r 0.89, n 22). The values for the relation of $\delta^{13}C$ and $\delta^{1}H$ and charge correspond to the values of 160–200 p.p.m./el (δ^{13} C) ¹⁶ and 8–10.6 p.p.m./el $(\delta^1 H)^{12, 17}$ reported earlier.

EXPERIMENTAL

Cyclopentadithiophenones and fluorenone were obtained from stock or prepared by standard methods 18, 19 and purified by sublimation in vacuo. Commercially available 95% ethanol, cyclohexane, CDCl₃, CF₃CO₂H, and CF₃CO₂D (Merck; Uvasol) were used.

MO Calculations were performed on the Telefunken TR-4 and CDC Cyber 74-16 computers of the Computing Center of the University, Groningen. The PPP program was based on the Householder method for the determination of eigenvalues and eigenvectors.

U.v. spectra were recorded on a Cary 15 spectrophoto-

meter equipped with a Cryoson TRL1B variable temperature control unit.

N.m.r. spectra were recorded on a Varian XL-100/15 spectrometer with variable temperature probe. CHCl₃ was used as an internal standard in the ¹H n.m.r. measurements. In the ¹³C n.m.r. experiments chemical shifts were measured relative to the CF3 resonance and converted to Me4Si as reference using known relationships between the chemical shifts of CF₃, CHCl₃, and Me₄Si.

Assignment of ¹³C N.m.v. Resonances.—Compound (I). The resonance at δ 128.3 p.p.m. present in the spectrum of a freshly prepared solution in CF₃CO₂D slowly changes into a triplet. This resonance has to be assigned to C(2) and C(5), since H-D experiments 9,10 have shown that exchange occurred at these sites. The quaternary carbon resonance at δ 151.8 p.p.m., with half the intensity of the resonances at δ 141.7 p.p.m., is assigned to C(3a) and C(3b).

Compound (III). The quarternary resonance at δ 135.4 p.p.m. is, because of its low intensity, assigned to C(6a) and C(7a).

Compound (IV). A tertiary resonance is hidden by a solvent peak at δ 120.2 p.p.m., as shown by the noise decoupled spectrum of (IV) in CDCl₃-CF₃CO₂H (6:1) which reveals a resonance close to that of CF₃CO₂H. The quaternary resonances at δ 153.0 and 134.2 p.p.m. are, because of their low intensity, assigned to C(3b) and C(7a).

Compound (V). One tertiary resonance is hidden by a solvent peak. The coupled spectrum showed a doublet $(J_{\rm CH} 190 \text{ Hz})$ with both satellites at equal distance of the solvent peak. The small resonance at δ 141.6 p.p.m. is assigned to C(7a).

Compound (VI). The tertiary resonances are assigned with the help of the coupling constants obtained from the coupled spectrum. The resonance at δ 121.8 p.p.m., displaying a one-bond coupling constant of 177 Hz, must be that of a β -thiophen carbon atom and is assigned to C(6). Of the three remaining tertiary resonances, with α -thiophen C-H coupling constants of 190 Hz, two resonances have a long-range coupling constant of 5 Hz and the third 7 Hz. This last resonance (& 129.9 p.p.m.) is, by analogy with the assignment for $CDCl_3$, assigned to C(5). The small quaternary resonance at δ 158.7 p.p.m. is assigned to C(3b).

The investigations were supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

REFERENCES

[7/980 Received, 8th June, 1977]

- P. B. Koster and M. J. Janssen, J.C.S. Perkin II, 1976, 323.
 A. Kuboyama, Bull. Chem. Soc. Japan, 1964, 37, 1540.
 K. Yoshihara and D. R. Kearns, J. Chem. Phys., 1966, 45, 1991.
- ⁴ H. Kuroda and T. L. Kunii, Theor. Chem. Acta, 1976, 9, 51.

⁵ J. Michl, R. Zahradnik, and P. Hochmann, J. Phys. Chem., 1966, **70**, 1732.

R. Stewart, M. R. Granger, R. B. Moodie, and R. J. Muenster, Canad. J. Chem., 1963, **41**, 1065. ⁷ P. B. Koster, Thesis, Groningen, 1972. ⁸ J. Runsink, Thesis, Groningen, 1976,

⁹ P. B. Koster, M. J. Janssen, and E. A. C. Lucken, J.C.S. Perkin II, 1974, 803.

¹⁰ P. B. Koster, M. J. Jansson, and E. A. C. Lucken, Spectroscopy Letters, 1973, 253. ¹¹ T. F. Page, T. Alger, and D. M. Grant, J. Amer. Chem. Soc.,

1965, 87, 5333.

¹² H. Spiesecke and W. G. Schneider, Tetrahedron Letters, 1961, 468.

¹³ J. A. Pople, Trans. Faraday Soc., 1953, 49, 1375.
¹⁴ R. Pariser and R. G. Parr, *J. Chem. Phys.*, 1953, 21, 446, 767.
¹⁵ K. Nishimoto, K. Nakatsukasa, R. Fujishiro, and S. Kato, *J. Chem. Phys.*, 1969, 14, 80.
¹⁶ J. B. Stothers, 'Carbon 13 N.M.R. Spectroscopy ', Academic Press, New York, 1972.

¹⁷ D. E. O'Reilly, Prog. N.M.R. Spectroscopy, 1967, 2, 57.
¹⁸ A. Kraak, A. K. Wiersema, P. Jordens, and H. Wijnberg, *Tetrahedron*, 1968, 24, 3381.
¹⁹ P. Jordens, G. Rawson, and H. Wijnberg, J. Chem. Soc. (C), 1970, 273.